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Abstract
Learned ISTA (LISTA) is a recently proposed
method to achieve sparse codes by unfolding
the iterative hard-thresholding algorithm (ISTA)
into a simple recurrent neural network (RNN).
LISTA’s performance, however, depends on the
efficiency of precomputed sparse code, as they
are prerequisite for loss computation in LISTA.
To overcome this limitation, we propose to un-
fold ISTA into a newly designed Sparse LSTM
(SLSTM) network. And it bridges LSTM and
sparse coding. Different from traditional sparse
coding approaches, SLSTM recasts the optimiza-
tion procedure as a neural network, thus enables
efficient inference both on seen/unseen data. Un-
like LISTA, a simple RNN, SLSTM is a LSTM
network, which is not an approximation to ex-
isting sparse coding methods. SLSTM also dif-
fers from traditional LSTMs in the unit structure.
SLSTM is specifically designed to sparse coding,
whereas LSTMS cannot give sparse representa-
tion.

1. Introduction
Sparse coding (SC) has demonstrated its superior decod-
ing ability on uncovering semantic information from noisy
and high dimensional data (Wright et al., 2010). It has
become a powerful tool for data analytics, especially for im-
age analysis, such as face recognition (Wright et al., 2009),
image super-resolution (Zhong et al., 2012), background
modeling (Cevher et al., 2008), image classification (Mairal
et al., 2008), etc. As the derived optimization problem
of sparse coding is non-convex when both dictionary and
sparse coefficients are unknown, a classic approach to solv-
ing sparse coding is to perform optimization on dictionary
learning and sparse approximation alternatively. The two al-
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ternating optimization problems can be reduced to the least
squared problem under `2- and `1- regularization, respec-
tively. Though each individual problem can be efficiently
solved by a number of existing optimization tools, the al-
ternating optimization procedure may suffer from several
limitations.

Firstly, the procedure optimizes one variable by fixing the
other one, which may introduce large fluctuation during
parameter updates. This is like a ball oscillates across the
slopes of the ravine while only making hesitant progress
along the bottom towards a local optimum. Secondly, infer-
ence of sparse coding is usually expensive since it requires
to solve the well-known LASSO problem with a learned
dictionary, which prohibits real-time applications. For ex-
ample, given an input image, one has to compute the sparse
representation for each patch from the image. To speed up
inference, Gregor et al. (Gregor & LeCun, 2010) recently
proposed the Learned ISTA (LISTA) algorithm to unfold the
iterative hard-thresholding (ISTA) algorithm (Blumensath
& Davies, 2008) into a recurrent neural network (RNN).
Though LISTA has shown promisingly empirical results
on improving convergence rate, it requires to pre-compute
optimal sparse codes using other SC methods in advance.
Therefore, the quality of the final sparse codes learned by
LISTA for classification/clustering problems highly depends
on the pre-computed sparse codes using other methods. In
addition, both ISTA and LISTA generate the output of sparse
codes exclusively on the previous outputs (at previous itera-
tions or layers). This kind of architecture leads to “micro-
phone phenomena”, where the error in the previous layers
is propagated and further amplified in the upcoming layers.

To address above limitations, we propose to unfold ISTA
into a newly designed Sparse LSTM (SLSTM) network. Dif-
ferent from traditional LSTMs, we introduce an adaptive mo-
mentum vector, which act as a gate, into each unit of LSTM
to induce sparsity. In this way, LSTM and sparse coding are
bridged. Compared with LISTA, which also cast the opti-
mization procedure sparse coding as a forward-backward
optimization procedure in neural networks, SLSTM is able
to capture long-term “memory” (i.e., useful information
for learning parameters from long periods of time), which
helps further speed up the convergence rate for learning
sparse codes and improve the quality of the learned codes
for post-processing prediction problems. The overall op-
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timization framework for sparse coding using SLSTM is
denoted by SC2Net in the sequel, which stands for encoding
SC into SLSTM networks. Different from existing methods
(e.g. LISTA), our proposed SC2Net does not require pre-
computed sparse codes as input, and thus is an end-to-end
optimization solution to sparse coding. Moreover, SC2NET
is very flexible to be extend to variants of sparse coding with
additional task-related regularization loss.

In summary, the main contributions of this paper are sum-
marized as follows,

1. We propose a new LSTM network, named SLSTM,
which can naturally connect sparse coding with LSTM.
In this way, the learning of sparse coding can be per-
formed through standard forward-background gradient-
typed updates. To the best of our knowledge, this is the
first work to bridge LSTM network and sparse coding.

2. Different from the previous RNN based sparse cod-
ing method, LISTA, the proposed framework SC2NET
is not an approximation to existing sparse coding ap-
proaches. Instead, SC2NET is a data adaptive ap-
proach, and does not require any pre-computed sparse
codes, which is truly an end-to-end solution.

2. Preliminaries
Given a data matrix X = [x1,x2, · · · ,xn] ∈ Rd×n,
the goal of sparse coding is to learn a shared dictionary
B = [b1,b2, · · · ,bd] ∈ Rk×d that can be used to generate
sparse codes S = [s1, s2, · · · , sn] ∈ Rk×n for the input
data X. This problem can be solved as follows,

min
S,B
‖X−BS‖2F + λ‖S‖21, s.t.‖bi‖2 ≤ 1, i = 1, · · · k

(1)
The alternating optimization is general the most popular
method to achieve sparse code. Specifically, the problem 1
is solved by alternating sparse between the sparse approxi-
mation and dictionary learning that corresponds to `1− and
`2− regularized least square problem, respectively.

For a given an input signals X = [x1,x2, · · · ,xn], dictio-
nary learning aims to learn a collection of bases B with
fixed sparse codes S = [s1, s2, · · · , sn], which generally re-
duces to the following `2-constrained optimization problem,

min
B
‖X−BS‖2F , s.t.‖bi‖2 ≤ 1, i = 1, · · · k. (2)

This problem is also called as the ridge regression, and exists
a closed-form solution. Compared with dictionary learning,
sparse approximation attracts much more research attention
with goal is to approximate an input signal, x, in terms of
a “sparse” combination of fixed bases B. The sparse signal

can be recovered by solving,

min
s
‖X−BS‖2F + λ‖S‖21. (3)

The above problem can be solved by the iterative hard-
thresholding (ISTA) algorithm proposed in (Blumensath &
Davies, 2008) with theoretical guarantee. To be specific,
ISTA decomposes the objective of Problem 3 into two parts:
the differentiable part g(S) = ‖X −BS‖2F is updated by
gradient descent and `1 part is updated by hard thresholding.
The updating formula can be mathematically express as
follows,

S(t) = sh(λτ)(S
(t−1) − τOg(S(t−1))), (4)

where the shrinkage function is defined as sh(λτ)(S) =
sign(S)(|S| − λτ)+. The solution of Problem 4 can then be
solved through the following updating rule,

S(t) = sh(λτ)(S
(t−1) − τ(B>(BS(t−1) −X))) (5)

= sh(λτ)(WeS
(t−1) +WdX), (6)

where We = I − τB>B, Wd = τB>. Gregor et
al. proposed a neural network based method, termed LISTA
(Gregor & LeCun, 2010) to unfold the above ISTA into a
simple Recurrent Neural Network (RNN) wherein We and
Wd are decoupled. In other words, We and Wd are treated
as two independent variables during training in LISTA. Such
a decoupling makes LISTA different from ISTA and our ex-
periments will show that the decoupling is helpful to enjoy
faster convergence speed as well as better optimum. We
found that in LISTA the parameters We,Wd and τ in the
non-linear activation function sh(λτ) are shared in all the
layers and updated simultaneously through backpropagation
to minimize ‖s− s∗‖, where s∗ is the optimal sparse code
precomputed from other existing SC methods like ISTA.

3. SC2Net
The architecture proposed in LISTA has two disadvantages.
First, it requires an additional effort to get s∗ thus lead-
ing to a high computational cost. Second, LISTA largely
depends on the quality of precomputed s∗. The poorly
precomputed sparse code s∗ subsequently affects the opti-
mization of sparse representation s. To avoid above two
limitations, we propose an optimization framework for SC,
in short for SC2Net, which reformulates SC as a LSTM net-
work instead of a simple RNN. Specifically, the sparsity loss
and the reconstruction loss are incorporated into the LSTM
network to supervise the optimization process without any
prior knowledge. For any data point x, the reconstruction
loss is constructed through as follows:

‖x− 1

τ
W>

d s‖2F (7)
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Figure 1. The Architecture of SC2Net.

where s is the output of encoding part in the network for x
and we apply the relationship B = 1

τW
>
d from Eqn 6. Here

we avoid to learn individual decoding matrix and instead
reuse the encoding matrix Wd, which gives two advantages:
1) It maintains the physical meaning of the original formula-
tion; 2) It avoids to learn additional parameters and reduce
the computation cost.

The `1 loss is also considered to control sparsity. The overall
cost function for SC2Net is defined as follows, 1,

‖x− 1

τ
W>

d s‖2F + λ‖s‖1, (8)

The architecture of SC2Net is illustrated in Figure 1.

3.1. Adaptive ISTA

ISTA builds the output of sparse codes exclusively on the
previous output without considering the historical informa-
tion. Recently, introduction of the “momentum" into dynam-
ics of stochastic gradient descent (SGD) shows promising
improvement on the robustness of SGD thanks to the incor-
poration of historical updating information (Qian, 1999).

Borrowing the notion of momentum, we introduce the adap-
tive momentum vectors i(t), f (t) into ISTA at time step t,
which can be formulated as follows,

C̃(t) = W · [S(t−1),X], (9)
C(t) = f (t) �C(t−1) + i(t) � C̃(t), (10)
S(t) = sh(λτ)(C

(t)), (11)

where W = [We,Wd]. Instead of directly feeding the
output of ISTA from time step t− 1 (i.e., C̃(t)) into ISTA,
we also consider the linear combination of C(t−1) at the
previous iteration and C̃(t) at the current iteration weighted

1In the experiments, the network is often learned through min-
imizing the average cost over a set of training samples using a
stochastic gradient method.

with adaptive momentum vectors f (t), i(t), respectively. The
adaptive momentum vectors allows per-parameter combina-
tion of two outputs, which is different from directly applying
momentum methods into ISTA. This linear combination per-
haps make the output less sparse. Therefore, we feed C̃(t)

into the shrinkage function again to ensure the outputs to
be sparse. We name this method as adaptive ISTA in the
upcoming sections.

3.2. Sparse Long Short Term Memory Unit (SLSTM)

Although introducing adaptive momentum vectors brings
flexibility in the optimization model, it triggers another big
challenge, i.e., how to determine the values of adaptive mo-
mentum vectors f (t), i(t). To address this challenge, we pro-
pose a novel unit named Sparse Long Short Term Memory
Unit (SLSTM) which parametrizes the adaptive momentum
vectors with the output of sparse codes at the previous layer
as well as input data such that f (t), i(t) are learned from data
without tedious hand-craft tuning. What makes the prob-
lem more interesting is that the iterative steps in adaptive
ISTA can be reformulated as an LSTM unit wherein “input
gate" and “forget gate" corresponds i(t) and f (t) respectively.
Different from standard LSTM, we discard “output gate"
in LSTM and uses different nonlinear activation function
for cell states. The proposed SLSTM unit is formulated as
follows,

i(t) = σ(Wi · [S(t−1),X]) (12)
f (t) = σ(Wf · [S(t−1),X]) (13)

o(t) = σ(Wo · [S(t−1),X]) (14)
C̃(t) = W · [S(t−1),X] (15)
C(t) = f (t) �C(t−1) + i(t) � C̃(t) (16)
S(t) = h(D,u)(C

(t)) (17)

where σ(x) = 1
1+e−x , h(D,u) = D(tanh(x + u) +

tanh(x − u)) and u, D are a trainable vector and diag-
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onal matrix, respectively.

Both ISTA and LISTA build the output of sparse codes
exclusively on the previous output. This kind of architec-
ture leads to “error propagation phenomenon" where the
error in the first few layers will be propagated and further
amplified in the upcoming layers. Furthermore, once the
useful information is discarded by the previous layers, the
upcoming layers will have no chance to utilize the discarded
information. Fortunately, this issue can be alleviated with
the usage of “cell” state C(t) in our method. The “cell"
plays as another “eye” to supervise the optimization, which
brings two major advantages. 1) It captures long-term de-
pendence from the previous outputs. 2) It automatically
accumulates important information and forgets useless or
redundant information in the dynamics of neural networks.

4. Experiments
In this section, we conduct experiments to verify the effec-
tiveness of the proposed SLSTM in classification.

4.1. Setup and Data

For fair comparisons, we adopt the same optimizer (i.e.
Adadelta (Zeiler, 2012)) to train all neural network based
apporaches with a GPU of NVIDIA TITAN X. Moreover,
we fix the sparsity parameter λ = 0.1 for all the tested
methods2. In other words, all the baselines and the proposed
method share the same objective function, while they differ
in the optimization approach. 3 In experiments, we compare
the proposed SLSTM with ISTA (Blumensath & Davies,
2008), FISTA(Blumensath & Davies, 2008), LISTA (Gre-
gor & LeCun, 2010), and LFISTA (Moreau & Bruna, 2017).
FISTA is an accelerated version of ISTA that converges
faster, both in theory and in practice. It considers the differ-
ence of the last two outputs of the shrinkage function. For
non-neural network-based methods (i.e. ISTA and LFISTA),
they uses the dictionary learning is implemented by scikit-
learn (Pedregosa et al., 2011). LISTA and LFISTA solve
SC by unfolding the ISTA and FISTA into a simple RNN,
respectively. We carry out experiments using MINST (Le-
cun & Cortes) and CIFAR-10 (Krizhevsky, 2009). MINST
contains 60,000 training images and 10,000 testing images
sampled from the digits (0-9), where each image has the
resolution of 28 × 28. The CIFAR-10 dataset is another
widely used benchmark dataset for various computer vision
tasks, which contains 60,000 32 × 32 × 3 colour images
distributed from 10 classes. Following the experimental
setting in (Gregor & LeCun, 2010; Montazer et al., 2012),

2Noted that, we experimentally found that all the tested meth-
ods perform stably when λ ranges from 0.01 to 0.1.

3All the experiments can be reproduced through the code at
Github. We will make it publicly available after acceptance.

we rescale all images into the range of [0, 1] and build a
dictionary with 100 atoms learned from the original data
set.

4.2. Classification Comparison

In this section, we investigate the performance of our
method for classification. Notice that, our method can
be easily extended as a cascade model to get discrimina-
tive codes by incorporating the label information into the
loss function, for fair comparisons, however, we evaluate
the performance of all tested methods in an unsupervised
way. More specifically, after getting sparse codes with the
tested methods, we train a logistics regression classifier
with the extracted sparse codes. Table 1 reports the results
from which, we observe that all the methods perform better
on MNIST than on CIFAR-10. The possible reasons may
be that 1) CIFAR-10 images are more complicated than
MNIST graysale images. 2) the sparse representation on
original colour CIFAR-10 images discards more discrimina-
tive information than MNIST graysale images. Furthermore,
SLSTM outperforms all the baselines by a large margin on
the both two datasets. This may attribute to the advantages
of SLSTM, i.e., the long-term dependence, nonlinearity, and
data-driven coding optimization procedure.

Datasets ISTA FISTA LISTA LFISTA SLSTM
MNIST 85.25 86.65 85.75 85.55 89.81

CIFAR-10 34.05 35.75 35.12 35.65 39.10

Table 1. Overall Comparison in terms of Classification Accuracy

5. Conclusion
We propose a new architecture which reformulates sparse
coding (SC) optimization as a LSTM network, named
SC2Net. To show the effectiveness of SC2Net, we propose
a new sparse code method (SLSTM) by implementing the
well-known ISTA using SC2Net. Extensive experimental
results show the effectiveness of SLSTM comparing with
several famous methods including ISTA, LISTA, FISTA,
and LFISTA.
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